翻訳と辞書
Words near each other
・ Quasi-invariant measure
・ Quasi-irreversible inhibitor
・ Quasi-isometry
・ Quasi-isomorphism
・ Quasi-judicial body
・ Quasi-judicial proceedings
・ Quasi-legislative capacity
・ Quasi-Lie algebra
・ Quasi-likelihood
・ Quasi-linkage equilibrium
・ Quasi-market
・ Quasi-maximum likelihood
・ Quasi-median networks
・ Quasi-Monte Carlo method
・ Quasi-Monte Carlo methods in finance
Quasi-Newton Inverse Least Squares Method
・ Quasi-Newton Least Squares Method
・ Quasi-Newton method
・ Quasi-Objects
・ Quasi-one-dimensional models
・ Quasi-open map
・ Quasi-opportunistic supercomputing
・ Quasi-peak detector
・ Quasi-perfect equilibrium
・ Quasi-periodic oscillation
・ Quasi-phase-matching
・ Quasi-polynomial
・ Quasi-projective variety
・ Quasi-property
・ Quasi-quotation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-Newton Inverse Least Squares Method : ウィキペディア英語版
Quasi-Newton Inverse Least Squares Method

In numerical analysis, The Quasi-Newton Inverse Least Squares Method is a quasi-Newton method for finding roots in variables. It was originally described by Degroote et al. in 2009.
Newton's method for solving uses the Jacobian matrix, , at every iteration. However, computing this Jacobian is a difficult (sometimes even impossible) and expensive operation. The idea behind the Quasi-Newton Inverse Least Squares Method is to build up an approximate Jacobian based on known input-output pairs of the function .
Haelterman et al. also showed that when the Quasi-Newton Inverse Least Squares Method is applied to a linear system of size , it converges in at most steps although like all quasi-Newton methods, it may not converge for nonlinear systems.
The method is closely related to the Quasi-Newton Least Squares Method
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-Newton Inverse Least Squares Method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.